Purification, cloning, and characterization of XendoU, a novel endoribonuclease involved in processing of intron-encoded small nucleolar RNAs in Xenopus laevis.

نویسندگان

  • Pietro Laneve
  • Fabio Altieri
  • Micol E Fiori
  • Andrea Scaloni
  • Irene Bozzoni
  • Elisa Caffarelli
چکیده

Here we report the purification, from Xenopus laevis oocyte nuclear extracts, of a new endoribonuclease, XendoU, that is involved in the processing of the intron-encoded box C/D U16 small nucleolar RNA (snoRNA) from its host pre-mRNA. Such an activity has never been reported before and has several uncommon features that make it quite a novel enzyme: it is poly(U)-specific, it requires Mn(2+) ions, and it produces molecules with 2'-3'-cyclic phosphate termini. Even if XendoU cleaves U-stretches, it displays some preferential cleavage on snoRNA precursor molecules. XendoU also participates in the biosynthesis of another intron-encoded snoRNA, U86, which is contained in the NOP56 gene of Xenopus laevis. A common feature of these snoRNAs is that their production is alternative to that of the mRNA, suggesting an important regulatory role for all the factors involved in the processing reaction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional characterization of XendoU, the endoribonuclease involved in small nucleolar RNA biosynthesis.

XendoU is the endoribonuclease involved in the biosynthesis of a specific subclass of Xenopus laevis intron-encoded small nucleolar RNAs. XendoU has no homology to any known cellular RNase, although it has sequence similarity with proteins tentatively annotated as serine proteases. It has been recently shown that XendoU represents the cellular counterpart of a nidovirus replicative endoribonucl...

متن کامل

Intronic U14 snoRNAs of Xenopus laevis are located in two different parent genes and can be processed from their introns during early oogenesis.

U14 is a member of the rapidly growing family of intronic small nucleolar RNAs (snoRNAs) that are involved in pre-rRNA processing and ribosome biogenesis. These snoRNA species are encoded within introns of eukaryotic protein coding genes and are synthesized via an intron processing pathway. Characterization of Xenopus laevis U14 snoRNA genes has revealed that in addition to the anticipated loca...

متن کامل

Site-directed mutagenesis of the Nidovirus replicative endoribonuclease NendoU exerts pleiotropic effects on the arterivirus life cycle.

The highly conserved NendoU replicative domain of nidoviruses (arteriviruses, coronaviruses, and roniviruses) belongs to a small protein family whose cellular branch is prototyped by XendoU, a Xenopus laevis endoribonuclease involved in nucleolar RNA processing. Recently, sequence-specific in vitro endoribonuclease activity was demonstrated for the NendoU-containing nonstructural protein (nsp) ...

متن کامل

The Xenopus intron-encoded U17 snoRNA is produced by exonucleolytic processing of its precursor in oocytes.

U17 is a small nucleolar RNA encoded in the introns of the Xenopus laevis gene for ribosomal protein S7 (formerly S8, see Note). To study the mechanisms involved in its in vivo processing from S7 transcripts, various in vitro synthesized RNAs embedding a U17 sequence have been microinjected into the germinal vesicle of Xenopus oocytes and their processing analysed. In particular, the Xenopus U1...

متن کامل

Characterization of the intron-encoded U19 RNA, a new mammalian small nucleolar RNA that is not associated with fibrillarin.

We have characterized a new member (U19) of a group of mammalian small nuclear RNAs that are not precipitable with antibodies against fibrillarin, a conserved nucleolar protein associated with most of the small nucleolar RNAs characterized to date. Human U19 RNA is 200 nucleotides long and possesses 5'-monophosphate and 3'-hydroxyl termini. It lacks functional boxes C and D, sequence motifs req...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 278 15  شماره 

صفحات  -

تاریخ انتشار 2003